Tropical Forests of Réunion Island Classified from Airborne Full-Waveform LiDAR Measurements
نویسندگان
چکیده
From an unprecedented experiment using airborne measurements performed over the rich forests of Réunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI), obtained as an integral of the foliage profile. The campaign involved sites ranging from coastal to rain forest, including tropical montane cloud forest, as found on the Bélouve plateau. The mean values of estimated LAI retrieved from the apparent foliage profile are between ~5 and 8 m2/m2, and the mean canopy height values are ~15 m for both tropical montane cloud and rain forests. Good agreement is found between LiDARand MODIS-derived LAI for moderate LAI (~5 m2/m2), but the LAI retrieved from LiDAR is larger than MODIS on thick rain forest sites (~8 against ~6 m2/m2 from MODIS). Regarding the characterization of tropical forest biomes, we show that the rain and montane tropical forests can be well distinguished from planted forests by the use of the parameters directly retrieved from LiDAR measurements.
منابع مشابه
End-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar Onboard a Satellite Initialized from Airborne Ultraviolet Lidar Experiments
In order to study forests at the global scale, a detailed link budget for a lidar system onboard satellite is presented. It is based on an original approach coupling airborne lidar observations and an end-to-end simulator. The simulator is initialized by airborne lidar measurements performed over temperate and tropical forests on the French territory, representing a wide range of forests ecosys...
متن کاملA Comparison of Forest Biophysical Parameters Assessed with Lidar Data on Three Platforms: Ground, Airborne, and Satellite
7 Lidar remote sensing from three platforms – ground, airborne, and spaceborne – has 8 the capability to acquire direct three-dimensional measurements of the forest canopy that 9 are useful for estimating a variety of forest inventory parameters, including tree height, 10 volume, and biomass, and also for deriving useful information for characterizing wildlife 11 habitat or forest fuels. 12 The...
متن کاملInterest of a Full-Waveform Flown UV Lidar to Derive Forest Vertical Structures and Aboveground Carbon
Amongst all the methodologies readily available to estimate forest canopy and aboveground carbon (AGC), in-situ plot surveys and airborne laser scanning systems appear to be powerful assets. However, they are limited to relatively local scales. In this work, we have developed a full-waveform UV lidar, named ULICE (Ultraviolet LIdar for Canopy Experiment), as an airborne demonstrator for future ...
متن کاملDetecting tropical forest biomass dynamics from repeated airborne Lidar measurements
ha or more. Our results indicate that the 50-ha BCI plot lost a significant amount of 20 biomass (−0.8±2.2Mgha−1 yr−1) over the past decade (2000–2010). Over the entire island and during the same period, mean AGB change is −0.4±3.7Mgha−1 yr−1. Old growth forests lost biomass (−0.7±3.5Mgha−1 yr−1), whereas the secondary forests gained biomass (+0.4±3.4Mgha−1 yr−1). Our analysis demonstrates that...
متن کاملAirborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+
BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016